Audit Trail
This code customization shows how to set an audit trail on insertion and update. Like everything, there are many ways of doing this such as:
1. Use hidden user interface fields.

2. Code customization at the user interface layer.

3. Code customization at the data access layer.

Let’s say the Employee table has the following four additional fields:

[image: image1.png]
Use Hidden User Interface Fields
On the Add Employees page, include the Created On and Created By fields using the Panel Wizard. Double click on the Created On field to open the Page Properties dialog box. Set the Display style as Literal, unselect the Visible flag and select the Save field value to database flag.
[image: image2.png]
Click on the Initial Value tab, and select the initial value as Current Date and Time.

[image: image3.png]
Repeat both of the above steps for the Created By field as well, except the Initial Value tab should use a Custom Function instead of the Current Date and Time. Set the Custom Function to Me.Page.SystemUtils.GetLoginId() [VB] or this.Page.SystemUtils.GetLoginId() [C#].
[image: image4.png]
You can remove the Created On and Created By labels from the page and move the two fields into a different location so as not to take space on the page.
Code customization at the user interface layer
You can also add a code customization at the user interface layer for each page. The GetUIData function retrieves all of the user interface data into an internal record that is then saved by the SaveData method on the Record Control class.

We can override the GetUIData method, call the base GetUIData to retrieve all of the data from the user interface, and then set the four audit fields.

Public Overrides Sub GetUIData()

 MyBase.GetUIData()

 Me.DataSource.CreatedOn = DateTime.Now()

 Me.DataSource.CreatedBy = Me.Page.SystemUtils.GetLoginId()

 Me.DataSource.LastUpdatedOn = DateTime.Now()

 Me.DataSource.LastUpdatedBy = Me.Page.SystemUtils.GetLoginId()

End Sub

Code customization at the data access layer
You can also add a code customization at the data access layer so that any insertion or update of the record from anywhere in the application will cause the audit fields to be updated appropriately. This way, you do not have to modify the code for each page.
To implement code customization at the data access layer, identify the database table which contains the audit fields. If the table is called Employees, you will see a file called EmployeesRecord.vb (or .cs) in the App_Code\Business Layer folder. The EmployeesRecord class derives from the BaseEmployeesRecord class which contains all of the generated code. Changed made to the EmployeesRecord class will never be overwritten.
In the EmployeesRecord class, you can insert the following two methods:

Private Sub Audit_Insert(ByVal sender As Object, _

 ByVal e As System.ComponentModel.CancelEventArgs) _

 Handles MyBase.InsertingRecord

 Dim mySession As System.Web.SessionState.HttpSessionState

 mySession = System.Web.HttpContext.Current.Session

 Me.CreatedOn = DateTime.Now()

 Me.CreatedBy = mySession("LoginInfo")("UserId")

End Sub
Private Sub Audit_Update(ByVal sender As Object, _

 ByVal e As System.ComponentModel.CancelEventArgs) _

 Handles MyBase.UpdatingRecord

 Dim mySession As System.Web.SessionState.HttpSessionState

 mySession = System.Web.HttpContext.Current.Session

 Me.LastUpdatedOn = DateTime.Now()

 Me.LastUpdatedBy = mySession("LoginInfo")("UserId")

End Sub

The Audit_Insert function handles the InsertingRecord event and is called just before a new Employee record is being inserted into the database. In this code, we will set the CreatedOn field to the current date and time, and the Created By field to the User Id of the logged in user from the session.

The Audit_Update method is similar to the Insert method and in this method we set the Last Updated On and the Last Updated By fields.

